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FATIGUE FAILURE CRITERTA
FOR COMBINED CYCLIC STRESS

by

*
Zvi Hashin

ABSTRACT
Failure criteria for combined cyclic stress are

represented in terms of parametric families of failure
surfaces in stress space. Quadratic approximations and
symmetry arguments are employed in systematic fashion to
construct isotropic failure criteria for general three
dimensional states of cyclic stress. Particular atten-
tion has been directed to the important cases of normal
stress-shear stress (bending-torsion) and biaxial stress
cyclings. It is shown that failure criteria for cycling

with and without mean stress (reversed cycling) have dif-

ferent forms, the latter admitting simpler representations.

*
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¥ 1. INTRODUCTION

The present work is concerned with a problem of long standing
in fatigue failure research -- the establishment of criteria of
failure when the state of cyclic stress is two or three dimensional.

The point of view adopted in the present and most other inves-
tigations is that there exists a failure criterion in terms of the
cyclic stress components. Thus the aspects of micro-damage or even
macro-crack propagation are not considered. The problem may then
be stated as follows: Given some simple fatigue failure information
such as S-N curves for single stress components, obtained experi-
mentally, construct fatigue failure criteria for a more complicated
state of stress.

The problem in this sense resembles establishment of static
failure criteria or plastic yielding criteria. There is however an
important difference which does not appear to have been emphasized
in the literature in the present context. In contrast to static
stress a stress cycle is defined in terms of two stresses: maxi-
mum and minimum amplitude or equivalently, mean and alternating
stress. Thus a failure criterion for combined stress should include
both parts for each stress component. This will be discussed later.

Much of previous work on the subject is based on postulates
that failure will occur when a certain physical quantity reaches an
x ultimate value. The quantities used are: principal normal stress,
principal normal strain, principal shear stress, complete strain
energy density, distortional strain energy density (equivalent to
octahedral shear stress criterion). These postulates are well
known for static loadings. In cyclic loading the ultimate quantity

(e.a., maximum stress) is to be obtained from the appropriate S-N
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curve.

A well known quadratic criterion for uniaxial stress-shear
(bending-torsion) is due to Gough and Pollard [3]. In contrast to
previously mentioned criteria it involves two parameters to be
determined by experiment.

More recent reviews of various criteria and comparison with
test data may be found in [1, 2]. Extensive critical work on eval-
uation and verification of various criteria is due to Findley et al
in numerous papers.

Another type of phenomenological failure criteria is concerned
with planes of failure. Ref. [2] is concerned with fatigue failure
on the maximum shear plane and the establishment of a general three
dimensional failure criterion on this basis. 1In other work the
orientation of the plane of failure may also be an unknown of the :
problem. See [1, 2] for discussion of such theories.

A1l of the work mentioned, as well as the present one, are of

deterministic nature, thus disregarding the considerable scatter of

fatigue test data. There arises the fundamental question: which ‘
quantity is a deterministic failure criterion for combined stress

cycling supposed to predict? 1Is it the mean lifetime to failure

for a number of tests under identical combined stress cycling, or

some other statistical quantity? It appears that an ansker to this
question has not been given. This problem will not be considered

here but its presence and significance should not be ignored.

2. FAILURE CRITERTA

The maximum and minimum amplitudes of a cyclic stress component

2 1
iy * %5

are denoted o respectively. Then the mean and alternating
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stresses, G?j and Ozj’ are defined by

m 1 2
.= %(o0, +
%5 2 ij 013)
(2.1)
o,. = %(o?. - o%.)
ij ij ij

It will be assumed that all stresses cycle at same frequency and
that their amplitudes do not change during the cycling.

A failure criterion for a three dimensional state of stress
determines the number of cycles to failure N for the given state
of stress. It will be a function not only of the stress components
(2.1) but also of their phase lags 6ij’ fig. 1, since it is to be
expected that in-phase cycles of stress components will produce dif-
ferent damage than cycles which are not in phase. In general there-

fore,thc failure condition is

Fle, o 80 8. Ny %1 (2.2)

e 144 i3
It may be noted in passing that the problem may be further com-
plicated by allowing stress cycle amplitudes to change during cycling.
An important special case is application of one stress cycle com-
ponent first and then another. This situation would require cumula-
tive damage theory under combined stress and will not be considered
here.

Phase lags are encountered when the stresses are due to a num- !

ber of cyclic forces which are not in phase. The writer is not
aware of consideration in the literature of their influence on j
failure under combined stress. It will be henceforth assumed that all

stresses cycle in phase and thus the 6ij vanish. Thus (2.1) becomes

F(OTj’ Gij) N) -« 1 (2‘3)
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It should be noted that sign reversal of any o?j produces a
cycling which is half a cycle out of phase with respect to other
cycles. Thus this specific out of phase cvcling is included in
the formulation.

Two important special cases are vanishing alternating stress

and vanishing mean stress. In the first case
m o s
F(Uij’ 0, N) = F(Oij) 1 (2.4)

which is the static failure criterion, while in the second

» N} = 1 (2.5)

which is a failure criterion for reversed cycling.

The situation is now further simplified by assuming that the

ratio

R = -3 (2.6)
ij
is the same for all stress component cycles. This is the case when
the body remains elastic under cycling since then all stresses vary

linearly with the instantaneous values of the applied cyclic forces.

In view of (2.1) and (2.6), (2.3) can be written as
Fid o° (2 8} o701 ~ B3, NI~ 1 (2.7)
i.j ’ 2 ij ’ .

which will from now on be written

F(oij, R, N) =1 (2.8)

where it is understood that 955 represent the maximum amplitudes

of stress cycles, and that (2.8) is dependent on the value of R.

Therefore, any single component S-N curve to be used in obtaining
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information about the failure criterion must have this same R.

It appears that all previous work on the subject is based on
the form (2.8) thus tacitly incorporating the assumptions which
have been pointed out above. Consideration of failure criteria of
type (2.3) would introduce tremendous additional complexity.

It is conceptually helpful to adopt the usual stress space
representation of failure criteria. In such a description (2.8)
for a fixed N is a surface in six dimensional stress space (or in
three dimensional principal stress space). The surface is the locus
of all cyclic stress states (with same frequency and same R ratio)
which produce failure after N cycles. When N varies (2.8) becomes
a parametric family of surfaces with parameter N. The static
failure criterion is defined by the surface N=0. Such an approach
has been previously used in [4] for fatigue failure of unidirec-
tional fiber composites in plane stress.

A state of stress 945 which produces failure after N cycles
may be regarded as a vector in stress space connecting the origin
to the appropriate point on the N failure surface. It is to be
expected on physical grounds that if all 945 are increased in fixed
mutual ratios the number of cycles to failure will decrease. It
follows that the failure surface for N, is contained within the
failure surface for N1 < NZ' Consequently (2.8) is a non-intersect-
ing family of surfaces which are all contained within the static
failure surface, fig. 2. (It should be noted that the foregoing
reasoning disregards scatter.)

Since infinite failure stresses do not occur in nature the

failure surfaces should be closed. However, an infinite failure

stress may at times be a convenient mathematical idealization to
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express the fact that a failurc stress for one situation is larger
by an order of magnitude than for another. For example: failure
under hydrostatic compression as comparced to failure under uniaxial
stress. In the Miscs representation of distortional cenergy criterion
this leads to a cylindrical surface which extends to infinity in
octahedral dircction.

At this point some function is choscn to approximate the
failure surface in a curve fitting sensc. Since expericnce shows
that failurc surfaces arc gencrally curved the simplest rcasonable
approximation is a quadratic polvnomial. “The coefficients of the
polynomial must be obtaincd from test data for loadings which are
rcalizable in the laboratory.

[t should be noted that maximum stress and cnergy density cri-
teria, uscd in the past, arc also of quadratic naturc but by the
naturc of the assumption the cocfficients arc all predetermined
and the only fitting paramcter left is the failure valuce of the
stress or cnergy. It is therefore not surprising that these cri-
teria do not in gencral it the test data with accuracy. Scec
C.8.5 E1 ]}

For purpose of cxamination of CGough's criterion the
special situation when Y11 and gy, arce the only nonvanishing stresses

will be considered. 1In that cvent (2.8) i1s written as

f(o i B Npom g (2.9)

1 Sl

If the material is isotropic or even if it is only transverscly

isotropic around the direction of 911 the sign of the shecar stress
can make no difference in failure. (Sce fig. 3 for illustration.)
Thercefore (2.9) must be an ecven function of 9yz-

Next (2.9) is approximated by a quadratic polynomial. Thus

P
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A 017 * B 011”12 i (C o712 + D 991 + E Oyp = 1 (2300

where the coefficients are functions of N. The coefficients B and
E must vanish to make (2.10) even in PR Furthermore (2.10) must

satisfy the one-dimensional S-N curve information

t By 0 012 = OU(R, N) s
Gyy ™ cu(R, N) 042 = 0
Consequently, (2.10) assumes the form
2
2 St

A 011 + 011 + (:r—) =l (a)

u ((2..:2)
2 3
A g e D I 1 (b)

Additional information to determine A and D must come from
failure data under combined stress. It is emphasized that accordihg
to previous discussion 911 and 917 €ycles must have the same R ratio.

If the cycling is reversed R = -1 then a change of sign of
6,1 cannot affect the failure for it merely displaces all 911 cycles
by half a cycle, which is equivalent to changing the sign of the
shear stress with respect to normal stress cycles. Consequently

(2.12) must be insensitive to a change of sign of o and therefore

11
D=0. Thus (2.12) reduces to the simple form
s g

O a
(6_1_1) + (.T_LZ) .1 (2.1%)
u u

Equ. (2.13) is the Gough "ellipse quadrant" criterion,[3]. An

alternate quadratic criterion due to Gough and Pollard {3} is

o 2 O (2 4 (0] a 2
(_1_1) (.3-1)+ 11(2-£)+(_l_2_) .
ou TU u TU Tu

Q
1
—
~
(o8]
[
-y
~




T

e o

e ot

which is called the "ellipse arc'" criterion and is seen to be a

special case of (2.12). It appears that the special (drms of the -
coefficients in (2.14) were obtained by empirical fitting.
The present interpretation of the Gough criteria implies that:
1) 991 and 992 cycles should have the same R ratio.
Otherwise the failure criterion is of type (2.3)
and (2.13-14) cannot be expected to be valid.
2) Criterion (2.13) should be in better agreement
with reversed cycling than with cycling including
mean stress. :
Tests reported by Gough , [5], include combined cycling with
different and with same R ratios. For the case of identical R
ratios the results do not especially favor (2.13) over (2.14) for
reversed cycling. It should be noted that failure criteria shown
in [5] were fitted to the data while by present interpretation they
should be expressed in terms of one dimensional failure stresses.
On the other hand data of [6] (76S5-T61 Aluminum) for various values
of mean stress do indicate best agreement with (2.13) for reversed
cycling and worsening agreement with increasing mean stress. It
would be worthwhile to conduct a testing program with specific pur-
pose to examine this question.
Gough et al have reported that (2.13) is in better agreement
with ductile metals (steel) while (2.14) is in better agreement
with brittle ones (cast iron). This has also been supported by
test data of Findley , [7],including also Aluminum alloys. However,
this appears to be a purely empirical observation.

The general criterion (2.8) is now reconsidered on the basis

of material symmetry. The present discussion is limited to the case
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of isotropic materials. Isotropy implies that the failure is inde-
pendent of the set of axes to which the stress tensor is referred.
It follows that (2.8) can at most be a function of the invariants

of the stress tensor. Thus

60Ty B 0oy By H) = 1 (2.15)
where ]
4
by ™odg,y & g ® 0y Sy gk 0y (a)
1, = + + AN gk + + (b) (2.16)
2T “33¥9n  Oanliag W Hoaley T955 - "854 AT ¥ T Bey T 0a0y g

Y

g (] a

R U
R ™ % Ty e = 210505 (c) ‘
s B SRR

and 015 0O, Oz are the principal stresses associated with Oij'

Consider first the situation where one of the principal stresses,
0z say, vanishes. It follows from (2.16¢) that Ig vanishes. Hence,

(2.15) reduces to ';

(13, 1, I3, R, N) = g(I, 1,) = 1 (2.17)

The functional form (2.17) is casily determined from an experiment
such as bending-torsion in which the only nonvanishing stresses are

9112 912° It follows from (2.16) that for this state of stress
911 = I1 012 = /-12 (2.18) z

‘ ; If the functional relation (2.9) is known from experiment it follows

at once that (2.17) is defined by
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which is equivalent to
f(ol + 0,, /-0y0,) = 1 (2.20)

It would be of interest to examine experimentally whether torsion-
; bending data can predict biaxial stressing data or vice versa, as
stated by (2.20).

As an example consider the Gough form (2.13). Then (2.20)

becomes
2
Gy T O 0,0
(J_*O__.%> : *Trl Z .3 (2.21)
M u

Equs. (2.20-21) provide fatigue failure criteria for biaxial
reversed stressing and are thus of particular importance for pres-
sure vessels. Rotvel (2] has conducted an extensive series of
biaxial principal stress reversed cycling tests with thin walled
specimens under internal pressure and axial force cycling, including
principal stresses of equal and unequal signs. He found that (2.21)

was in good agreement with the experimental data. However, still

better agreement was obtained with an empirical criterion given by
Crossland, [8],obtained by testing of torsional cycling combined with
static hydrostatic pressure. Because of the static stress component

the latter criterion falls within the category of the much more com-

A A << A -+ e RO ST AT

plicated criteria (2.3) and therefore does not apply to the test
data of (2], for reversed in phase cycling. It must be concluded
that the better agreement is fortuitous, bearing in mind the uncer- {

tainties of scatter and anisotropy. Fig. 4 reproduces comparison

of the two criteria with non-dimensional test data as given in [1].

In the general three dimensional case (2.8) can be written as

{

e g

poasulhan £ g ~—as
L R I W s
0850y it :
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F(o], Oys Oz, R, N) =1 (2.22)

which is the equivalent of (2.15). The simplest case is reversed
cycling, R=-1, of all principal stresses. In this case it is evi-

dent on physical grounds that a change of sign of all stresses
cannot affect the failure since it merely displaces all cycles by

one half cycle. Therefore

F(Gl, 0ys Oz N) = F(-ol, “0ys Oz, N) (2:.:2:5)

In view of (2.16) the equivalent of relation (2.23) in (2.15) form is:

G(I], IZ’ 13, N) = G(-Il, 12, -13, N) (2.24)

The failure criterion is now expressed as a polynomial in stresses.

To do this it is convenient to express (2.24) as a polynomial in
the invariants. Because of the relation (2.24) terms which change
sign with simultaneous sign change of Il and 13 cannot appear. Con-

sequently the polynomial has the form

M Rl e R PR R g, el £2,95)

G(T 2l YA 2212 130113

1' Iz! I3i
The terms in (2.25) contain stresses up to power 4. Therefore four
independent items of testing information are required to determine

the different coefficients. It is therefore much simpler to use a

quadratic approximation which implies that

PR T S (2.26)

G(1;, I 2 * Anlh

N) = A

Z7 3’ 2

The coefficients in (2.26) are easily determined in terms of the
simple information (2.11) and the identifications (2.18). It

follows that (2.26) assumes the form

y?{:ﬁ‘ ,*‘44
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This is the most general quadratic approximation to the three dimen-
sional isotropic failure condition for reversed cycling.
If the stress cycles have mean stresses the conditions (2.23-24)

need not apply. The quadratic approximation to (2.24) is in that

case
1
s e e e Ry (2.28)
11 111 ru‘f :
where
T T
1 u 117u
and o T, are given by (2.11). Additional information for failure

u’
under combined stress cycling is needed to determine Al and All'

A quadratic approximation of combined 0112012 ©OF 01,62 test data

can be used to model (2.28).

It is apparent that the present approach is entirély dependent
on isotropy of the material up to failure. While such an assumption
can be criticized it must be borne in mind that its abandorment would
complicate the problem by orders of magnitude. For if anisotropy

is to be taken into account then the nature of the developing aniso-

tropy as a function of number of cycles and state of stress must be

uncovered. Since this is an enormous undertaking it would seem that
from a practical point of view failure criteria would have to be
limited to modeling for each state of stress separately. For example
Gough's criteria for tension-shear should also apply if the material

becomes anisotropic, but the connection between this criterion and

those for other states of stress would be lost.
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3. CONCLUSION

The problem of establishment of deterministic fatigue failure cri
teria for three dimensional states of cyclic stress has been considered
in systematic fashion in terms of quadratic approximations of the
failure surface representations in stress space. The failure sur-
face introduced is the locus of all cyclic stress states with iden-
tical fatigue lifetime. Thus the failure surfaces are a parametric
family with parameter N the fatigue lifetime.

It has been shown that such a failure surface depends in
general on the mean and alternating parts of all the cyclic stress
components and on their mutual phase lags. Previous work as well
as the present one has dealt with the much simpler case where all
cycles are in phase and all R ratios of cyclic stress component
are identical.

A systematic method of quadratic approximations has been used
to derive the Gough criteria for bending-torsion fatigue and general
criteria for three dimensional states of stress. The latter are
based on assumption of material isotropy up to failure. Special
attention has been directed to reversed cycling (R = -1) since in
this case the failure criteria admit special simplification.

It is noted that a necessary, and presently lacking, ingredi-
ent of treatments such as the present one is recognition of the
statistical scatter of fatigue test result and the proper identi-
fication of deterministic predictions in terms of means and/or

other moments of the random data.
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Cylinders. (After Rotvel, [2].)




